Persistence in one-dimensional Ising models with parallel dynamics.

نویسندگان

  • G I Menon
  • P Ray
  • P Shukla
چکیده

We study persistence in one-dimensional ferromagnetic and antiferromagnetic nearest-neighbor Ising models with parallel dynamics. The probability P(t) that a given spin has not flipped up to time t, when the system evolves from an initial random configuration, decays as P(t) approximately 1/t(straight theta(p)) with straight theta(p) approximately 0.75 numerically. A mapping to the dynamics of two decoupled A+A-->0 models yields straight theta(p)=3/4 exactly. A finite size scaling analysis clarifies the nature of dynamical scaling in the distribution of persistent sites obtained under this dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistence Exponent in Superantiferromagnetic Quenching Typeset Using Revt E X

We measure the persistence exponent in a phase separating two-dimensional spin system with non-conserved dynamics quenched in a region with four coexisting stripe phases. The system is an Ising model with nearest neighbor, next-to-the-nearest neighbor and plaquette interactions. Due the particular nature of the ground states, the order parameter is deened in terms of blocks of spins. Our estima...

متن کامل

Persistence exponent in superantiferromagnetic quenching

We measure the persistence exponent in a phase separating two-dimensional spin system with non-conserved dynamics quenched in a region with four coexisting stripe phases. The system is an Ising model with nearest neighbor, next-to-the-nearest neighbor and plaquette interactions. Due the particular nature of the ground states, the order parameter is defined in terms of blocks of spins. Our estim...

متن کامل

رهیافت معادلات جریان در مدل آیزینگ کوانتمی یک بعدی

One dimensional quantum Ising model with nearest neighbor interaction in transverse magnetic field is one of the simplest spin models which undergo quantum phase transition. This model has been precisely solved using different methods. In this paper, we solve this model in uniform magnetic field -Jgσxn precisely using a new method called Continuous Unitary Transformations (CUT) or flow equation...

متن کامل

Exact Persistence Exponent for One-dimensional Potts Models with Parallel Dynamics

We obtain θp(q) = 2θs(q) for one-dimensional q-state ferromagnetic Potts models evolving under parallel dynamics at zero temperature from an initially disordered state, where θp(q) is the persistence exponent for parallel dynamics and θs(q) = −18 + 2 π2 [cos−1{(2− q)/q √ 2}]2 [PRL, 75, 751, (1995)], the persistence exponent under serial dynamics. This result is a consequence of an exact, albeit...

متن کامل

بسط دمای بالای پذیرفتاری مدل آیزینگ شبکه کاگومه با برهم‌کنش نزدیکترین همسایه‌ها

 The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of fer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 64 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2001